# [Update] Transpose of a Matrix | transpose of a matrix – Pickpeup

transpose of a matrix: นี่คือโพสต์ที่เกี่ยวข้องกับหัวข้อนี้

เนื้อหา

# Transpose of a Matrix

  

## Definition of the Transpose of a Matrix

If $$M$$ is an $$m \times n$$ matrix, then the transpose of $$M$$, denoted by $$M^T$$, is the $$n \times m$$ matrix obtained by interchanging the rows and columns of matrix $$M$$.

These are examples of the transpose of matrices.

a)

$$A = \begin{bmatrix} 1 & -2 & -3\\ \end{bmatrix}$$

Matrix $$A$$ has one row and a size (or order) $$1 \times 3$$. The transpose of matrix $$A$$ is obtained by interchanging the row of the matrix into a column. Hence the transpose of matrix $$A$$ has a size $$3 \times 1$$ and denoted by $$A^T$$ is given by

$$A^T = \begin{bmatrix} 1\\ -2\\ -3 \end{bmatrix}$$

b)

$$B = \begin{bmatrix} 9\\ -2\\ 6 \\ \end{bmatrix}$$

The transpose of matrix $$B$$, which has one column and a size $$4 \times 1$$, is obtained by interchanging the column of the matrix into a row. Hence the transpose of matrix $$B$$ has an order $$1 \times 4$$ and denoted by $$B^T$$ is given by

$$B^T = \begin{bmatrix} 9& -2& 6& \end{bmatrix}$$

c)

$$C = \begin{bmatrix} -3 & 0 & – 2\\ 6 & 4 & 0 \end{bmatrix}$$

Matrix $$C$$ has a size $$2 \times 3$$. The transpose of this matrix is obtained by interchanging the rows of the matrix into columns (or columns into rows). Hence the transpose $$C^T$$ of matrix $$C$$ has an order $$3 \times 2$$ and is given by

$$C^T = \begin{bmatrix} -3 & 6 \\ 0 & 4 \\ – 2 & 0 \end{bmatrix}$$

d)

$$D = \begin{bmatrix} 2 & – 5 & 9 \\ -7 & 0 & 9 \\ 1 & -2 & 11 \end{bmatrix}$$

The transpose of matrix $$D$$ with order $$3 \times 3$$ is obtained by interchanging the rows of the matrix into columns (or columns into rows). Hence the transpose $$D^T$$ of matrix $$D$$ has an order $$3 \times 3$$ and is given by

$$D^T = \begin{bmatrix} 2 & -7 & 1 \\ – 5 & 0 & -2 \\ 9 & 9 & 11 \end{bmatrix}$$

Note that the rows the transpose of a given matrix are the columns of the matrix and the columns of the transpose are the rows of the matrix.

READ  [NEW] ロストディケイドのCM女優┃スケバンやぶりっ子の2人組は誰？ | まえしまあみ - Pickpeup

## Properties of the Transpose of Matrices

Some of the most important properties of the transpose of matrices are given below.

1.   $$(A^T)^T = A$$.
2.   $$(AB)^T = B^T A^T$$
3.   $$(A+B)^T = A^T + B^T$$
4.   $$(k A)^T = k A^T$$ , k is a real number.
5.   $$(A^T)^{-1} = (A^{-1})^T$$
6.   $$Det(A^T) = Det(A)$$.
7.   $$A^T = A$$ if and only if $$A$$ is a symmetric matrix.
8.   $$A^{-1} = A^T$$ if and only if $$A$$ is an orthogonal (square) matrix.

## Examples with Solutions

Example 1

Find the transpose of the matrices:

a) $$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$      b) $$B = \begin{bmatrix} -2 & 0 & 1 \\ \end{bmatrix}$$      c) $$C = \begin{bmatrix} 5 & -7 \\ 1 & -4 \\ 0 & -1 \\ 7 & -4 \\ \end{bmatrix}$$

Solution

We find the transpose of a matrix by interchanging the rows and columns as follows:

a) $$A^T = \begin{bmatrix} 0 & 1\\ 0 & 0 \\ 1 & 0 \end{bmatrix}$$      b) $$B^T = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$      c) $$C^T = \begin{bmatrix} 5 & 1 & 0 & 7 \\ -7 & -4 & -1 & -4 \end{bmatrix}$$

Example 2

Matrices $$A$$ and $$B$$ are given by $$A = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$ , $$B = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$$.

Show that $$(AB)^T = B^T A^T$$ (verify property 2 above).

Solution

Calculate $$AB$$

$$AB = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Determine $$(AB)^T$$

$$(AB)^T = \begin{bmatrix} 3 & 1 \end{bmatrix}$$

Determine $$A^T$$ and $$B^T$$

$$A^T = \begin{bmatrix} -1 & 1 \\ 0 & 2 \\ 1 & 0 \end{bmatrix}$$ , $$B^T = \begin{bmatrix} -1 & 1 & 2 \end{bmatrix}$$

Calculate $$B^T A^T$$

$$B^T A^T = \begin{bmatrix} -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 0 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 1 \end{bmatrix}$$

Hence $$(AB)^T = B^T A^T$$

Example 3

Let matrix $$A = \begin{bmatrix} -1 & 0\\ 1 & 2 \end{bmatrix}$$

Show that $$(A^T)^{-1} = (A^{-1})^T$$ (verify property 5 above).

Solution

Determine $$A^T$$

$$A^T = \begin{bmatrix} -1 & 1\\ 0 & 2 \end{bmatrix}$$

Use the formula of the inverse of a $$2 \times 2$$ matrix $$\begin{bmatrix} x & y \\ z & w \\ \end{bmatrix}^{-1} = \dfrac{1}{xw – yz} \begin{bmatrix} w & – y \\ – z & x \\ \end{bmatrix}$$ to find $$(A^T)^{-1}$$

$$(A^T)^{-1} = -\dfrac{1}{2} \begin{bmatrix} 2 & 0\\ 1 & -1 \end{bmatrix}$$

READ  [Update] 周星馳：父親出軌，母親養大三個子女，長大後仍給父親買房-每日要聞 | 周星馳 - Pickpeup

$$\quad \quad = \begin{bmatrix} -1 & 0\\ -\dfrac{1}{2} & \dfrac{1}{2} \end{bmatrix}$$

Use the same formula of the inverse of a $$2 \times 2$$ matrix given above to find $$A^{-1}$$

$$A^{-1} = -\dfrac{1}{2} \begin{bmatrix} 2 & 1\\ 0 & -1 \end{bmatrix}$$

$$\quad \quad = \begin{bmatrix} -1 & -\dfrac{1}{2}\\ 0 & \dfrac{1}{2} \end{bmatrix}$$

We now determine $$(A^{-1}) ^T$$

$$(A^{-1}) ^T = \begin{bmatrix} -1 & 0 \\ -\dfrac{1}{2} & \dfrac{1}{2} \end{bmatrix}$$

Hence we conclude that $$(A^T)^{-1} = (A^{-1})^T$$.

Example 4

Let matrix $$A = \begin{bmatrix} -1 & 0 & 1\\ 1 & 2 & 2 \\ -2 & 0 & 1 \end{bmatrix}$$

Show that $$Det(A^T) = Det(A)$$ (verify property 6 above)

Solution

Calculate $$Det(A)$$ using the upper row

Calculate $$Det(A) = -1 ( 2 \times 1 – 0) + 1 (0 – 2(-2) ) = 2$$

Determine $$A^T$$

$$A^T \begin{bmatrix} -1 & 1 & -2 \\ 0 & 2 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Calculate $$Det(A^T)$$ using the leftmost column

$$Det(A^T) = -1 ( 2 \times 1 – 0) + 1 ( 0 – 2(-2)) = 2$$

Hence we conclude that $$Det(A^T) = Det(A)$$

Example 5

Use property 7 above to show that matrix $$A = \begin{bmatrix} 0 & -1 & 3\\ -1 & 2 & 5 \\ 3 & -5 & 1 \end{bmatrix}$$
is not a symmetric matrix.

Solution

Determine $$A^T$$

$$A^T = \begin{bmatrix} 0 & -1 & 3 \\ -1 & 2 & -5 \\ 3 & 5 & 1 \end{bmatrix}$$

We can verify that the entry at $$A_{2,3} = 5$$ and the entry at $$A^T_{2,3} = – 5$$, therefore matrices $$A^T$$ and $$A$$ are not equal which means that matrix $$A$$ is not symmetric.

## Questions (with solutions given below)

• Part 1

Given matrix
$$A = \begin{bmatrix} 1 & 1 & -3 \\ -1 & 0 & 0 \end{bmatrix}$$, calculate and show that the matrices $$A^T A$$ and $$A A^T$$ are both symmetric.

• Part 2

Given the matrices
$$A = \begin{bmatrix} -5 & -2 \\ – 1 & 2 \end{bmatrix}$$ and
$$B = \begin{bmatrix} 0 & 3 \\ 2 & -3 \end{bmatrix}$$ , find the matrix $$(A+B)^T$$

• Part 3

Let matrix $$A = \begin{bmatrix} 0 & \dfrac{5}{3 \sqrt 5} & \dfrac{2}{3} \\ \dfrac{1}{\sqrt 5} & – \dfrac{4}{3 \sqrt 5} & \dfrac{2}{3} \\ \dfrac{2}{\sqrt 5} & \dfrac{2}{3 \sqrt 5} & – \dfrac{1}{3} \end{bmatrix}$$. Show that $$A A^T = A^T A = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ and therefore $$A^{-1} = A^T$$.

## Transpose of Matrix | Logical Programming in C | by Mr.Srinivas

Transpose of Matrix | Logical Programming in C | by Mr.Srinivas
For Online Training Registration: https://goo.gl/r6kJbB ► Call: +918179191999
Subscribe to our channel and hit the bell 🔔🔔🔔 icon to get video updates.
For Classroom Training : https://nareshit.in/clanguagetraining/
For Online Training : https://nareshit.com/clanguageonlinetraining

\”Naresh IT is having 14+ years of experience in software training industry and the best Software Training Institute for online training, classroom training, weekend training, corporate training of Hadoop, Salesforce, AWS, DevOps, Spark, Data Science, Python, Tableau, RPA , Java, C.NET, ASP.NET, Oracle, Testing Tools, Silver light, Linq, SQL Server, Selenium, Android, iPhone, C Language, C++, PHP and Digital Marketing in USA, Hyderabad, Chennai and Vijayawada, Bangalore India which provides online training across all the locations

💡 Our Online Training Features:
🎈 Training with RealTime Experts
🎈 Industry Specific Scenario’s
🎈 Flexible Timings
🎈 Soft Copy of Material
🎈 Share Videos of each and every session.

💡 Please write back to us at
📧 us.training@nareshit.com/ 📧 online@nareshit.com or Call us at the USA: ☎+14042329879 or India: ☎ +918179191999

💡 Check The Below Links
► For Course Reg: https://goo.gl/r6kJbB
► Subscribe to Our Channel: https://goo.gl/q9ozyG
► Circle us on G+: https://plus.google.com/+NareshIT
► Follow us on Instagram: https://goo.gl/3UXYK3

นอกจากการดูบทความนี้แล้ว คุณยังสามารถดูข้อมูลที่เป็นประโยชน์อื่นๆ อีกมากมายที่เราให้ไว้ที่นี่: ดูเพิ่มเติม

## How to find Adjoint of 3 X 3 Matrix

This is shortcut method to find Adjoint of 3 X 3 Matrix

## Comment Box 3 | Ma’am Are You Married ?

Jennys Lectures Comment Box 3
Vlogging Channel Link: https://bit.ly/354n7C7
See Complete Playlists:
Data Structures and Algorithms: https: https://www.youtube.com/playlist?list=PLdo5W4Nhv31bbKJzrsKfMpo_grxuLl8LU

Connect \u0026 Contact Me:
Quora: https://www.quora.com/profile/JayantiKhatriLamba
Instagram: https://www.instagram.com/jayantikhatrilamba/

## Transpose matrix | Lecture 4 | Matrix Algebra for Engineers

Definition of the transpose. How to take the transpose of the product of two matrices.
Join me on Coursera: https://www.coursera.org/learn/matrixalgebraengineers
Lecture notes at http://www.math.ust.hk/~machas/matrixalgebraforengineers.pdf
Subscribe to my channel: http://www.youtube.com/user/jchasnov?sub_confirmation=1

## The Excel TRANSPOSE Function

Learn how to transpose columns into rows in Excel using the power of the TRANSPOSE function. In other words, you’ll learn how to make your column headings become row headings, and vice versa. There’s more than one way to accomplish this, but in this video we’ll focus on using a formula to transpose. My entire playlist of Excel tutorials: http://bit.ly/tech4excel Consider supporting Technology for Teachers and Students on Patreon: https://www.patreon.com/technologyforteachersandstudents Here’s the practice file that goes with this video: https://bit.ly/transposeexcel exceltutorial

นอกจากการดูบทความนี้แล้ว คุณยังสามารถดูข้อมูลที่เป็นประโยชน์อื่นๆ อีกมากมายที่เราให้ไว้ที่นี่: ดูบทความเพิ่มเติมในหมวดหมู่Music of Turkey

ขอบคุณที่รับชมกระทู้ครับ transpose of a matrix

READ  [NEW] 나를 부르는 초라한 향기 | 라핀쿨타 - Pickpeup