[Update] | linear algebra – Pickpeup

linear algebra: นี่คือโพสต์ที่เกี่ยวข้องกับหัวข้อนี้

%PDF-1.5
%����
4 0 obj
<< /S /GoTo /D (section.1) >>
endobj
7 0 obj
(What is Linear Algebra?)
endobj
8 0 obj
<< /S /GoTo /D (section.2) >>
endobj
11 0 obj
(Gaussian Elimination)
endobj
12 0 obj
<< /S /GoTo /D (subsection.2.1) >>
endobj
15 0 obj
(Notation for Linear Systems)
endobj
16 0 obj
<< /S /GoTo /D (subsection.2.2) >>
endobj
19 0 obj
(Reduced Row Echelon Form)
endobj
20 0 obj
<< /S /GoTo /D (section.3) >>
endobj
23 0 obj
(Elementary Row Operations)
endobj
24 0 obj
<< /S /GoTo /D (section.4) >>
endobj
27 0 obj
(Solution Sets for Systems of Linear Equations)
endobj
28 0 obj
<< /S /GoTo /D (subsection.4.1) >>
endobj
31 0 obj
(Non-Leading Variables)
endobj
32 0 obj
<< /S /GoTo /D (section.5) >>
endobj
35 0 obj
(Vectors in Space, n-Vectors)
endobj
36 0 obj
<< /S /GoTo /D (subsection.5.1) >>
endobj
39 0 obj
(Directions and Magnitudes)
endobj
40 0 obj
<< /S /GoTo /D (section.6) >>
endobj
43 0 obj
(Vector Spaces)
endobj
44 0 obj
<< /S /GoTo /D (section.7) >>
endobj
47 0 obj
(Linear Transformations)
endobj
48 0 obj
<< /S /GoTo /D (section.8) >>
endobj
51 0 obj
(Matrices)
endobj
52 0 obj
<< /S /GoTo /D (section.9) >>
endobj
55 0 obj
(Properties of Matrices)
endobj
56 0 obj
<< /S /GoTo /D (subsection.9.1) >>
endobj
59 0 obj
(Block Matrices)
endobj
60 0 obj
<< /S /GoTo /D (subsection.9.2) >>
endobj
63 0 obj
(The Algebra of Square Matrices )
endobj
64 0 obj
<< /S /GoTo /D (section.10) >>
endobj
67 0 obj
(Inverse Matrix)
endobj
68 0 obj
<< /S /GoTo /D (subsection.10.1) >>
endobj
71 0 obj
(Three Properties of the Inverse)
endobj
72 0 obj
<< /S /GoTo /D (subsection.10.2) >>
endobj
75 0 obj
(Finding Inverses)
endobj
76 0 obj
<< /S /GoTo /D (subsection.10.3) >>
endobj
79 0 obj
(Linear Systems and Inverses)
endobj
80 0 obj
<< /S /GoTo /D (subsection.10.4) >>
endobj
83 0 obj
(Homogeneous Systems)
endobj
84 0 obj
<< /S /GoTo /D (subsection.10.5) >>
endobj
87 0 obj
(Bit Matrices)
endobj
88 0 obj
<< /S /GoTo /D (section.11) >>
endobj
91 0 obj
(LU Decomposition)
endobj
92 0 obj
<< /S /GoTo /D (subsection.11.1) >>
endobj
95 0 obj
(Using LU Decomposition to Solve Linear Systems)
endobj
96 0 obj
<< /S /GoTo /D (subsection.11.2) >>
endobj
99 0 obj
(Finding an LU Decomposition.)
endobj
100 0 obj
<< /S /GoTo /D (subsection.11.3) >>
endobj
103 0 obj
(Block LDU Decomposition)
endobj
104 0 obj
<< /S /GoTo /D (section.12) >>
endobj
107 0 obj
(Elementary Matrices and Determinants)
endobj
108 0 obj
<< /S /GoTo /D (subsection.12.1) >>
endobj
111 0 obj
(Permutations)
endobj
112 0 obj
<< /S /GoTo /D (subsection.12.2) >>
endobj
115 0 obj
(Elementary Matrices)
endobj
116 0 obj
<< /S /GoTo /D (section.13) >>
endobj
119 0 obj
(Elementary Matrices and Determinants II)
endobj
120 0 obj
<< /S /GoTo /D (section.14) >>
endobj
123 0 obj
(Properties of the Determinant)
endobj
124 0 obj
<< /S /GoTo /D (subsection.14.1) >>
endobj
127 0 obj
(Determinant of the Inverse)
endobj
128 0 obj
<< /S /GoTo /D (subsection.14.2) >>
endobj
131 0 obj
(Adjoint of a Matrix)
endobj
132 0 obj
<< /S /GoTo /D (subsection.14.3) >>
endobj
135 0 obj
(Application: Volume of a Parallelepiped)
endobj
136 0 obj
<< /S /GoTo /D (section.15) >>
endobj
139 0 obj
(Subspaces and Spanning Sets)
endobj
140 0 obj
<< /S /GoTo /D (subsection.15.1) >>
endobj
143 0 obj
(Subspaces)
endobj
144 0 obj
<< /S /GoTo /D (subsection.15.2) >>
endobj
147 0 obj
(Building Subspaces)
endobj
148 0 obj
<< /S /GoTo /D (section.16) >>
endobj
151 0 obj
(Linear Independence)
endobj
152 0 obj
<< /S /GoTo /D (section.17) >>
endobj
155 0 obj
(Basis and Dimension)
endobj
156 0 obj
<< /S /GoTo /D (subsection.17.1) >>
endobj
159 0 obj
(Bases in Rn.)
endobj
160 0 obj
<< /S /GoTo /D (section.18) >>
endobj
163 0 obj
(Eigenvalues and Eigenvectors)
endobj
164 0 obj
<< /S /GoTo /D (subsection.18.1) >>
endobj
167 0 obj
(Matrix of a Linear Transformation)
endobj
168 0 obj
<< /S /GoTo /D (subsection.18.2) >>
endobj
171 0 obj
(Invariant Directions)
endobj
172 0 obj
<< /S /GoTo /D (section.19) >>
endobj
175 0 obj
(Eigenvalues and Eigenvectors II)
endobj
176 0 obj
<< /S /GoTo /D (subsection.19.1) >>
endobj
179 0 obj
(Eigenspaces)
endobj
180 0 obj
<< /S /GoTo /D (section.20) >>
endobj
183 0 obj
(Diagonalization)
endobj
184 0 obj
<< /S /GoTo /D (subsection.20.1) >>
endobj
187 0 obj
(Diagonalization)
endobj
188 0 obj
<< /S /GoTo /D (subsection.20.2) >>
endobj
191 0 obj
(Change of Basis)
endobj
192 0 obj
<< /S /GoTo /D (section.21) >>
endobj
195 0 obj
(Orthonormal Bases)
endobj
196 0 obj
<< /S /GoTo /D (subsection.21.1) >>
endobj
199 0 obj
(Relating Orthonormal Bases)
endobj
200 0 obj
<< /S /GoTo /D (section.22) >>
endobj
203 0 obj
(Gram-Schmidt and Orthogonal Complements)
endobj
204 0 obj
<< /S /GoTo /D (subsection.22.1) >>
endobj
207 0 obj
(Orthogonal Complements)
endobj
208 0 obj
<< /S /GoTo /D (section.23) >>
endobj
211 0 obj
(Diagonalizing Symmetric Matrices)
endobj
212 0 obj
<< /S /GoTo /D (section.24) >>
endobj
215 0 obj
(Kernel, Range, Nullity, Rank)
endobj
216 0 obj
<< /S /GoTo /D (subsection.24.1) >>
endobj
219 0 obj
(Summary)
endobj
220 0 obj
<< /S /GoTo /D (section.25) >>
endobj
223 0 obj
(Least Squares)
endobj
224 0 obj
<< /S /GoTo /D (appendix.A) >>
endobj
227 0 obj
(Sample Midterm I Problems and Solutions)
endobj
228 0 obj
<< /S /GoTo /D (appendix.B) >>
endobj
231 0 obj
(Sample Midterm II Problems and Solutions)
endobj
232 0 obj
<< /S /GoTo /D (appendix.C) >>
endobj
235 0 obj
(Sample Final Problems and Solutions)
endobj
236 0 obj
<< /S /GoTo /D (appendix.D) >>
endobj
239 0 obj
(Points Vs. Vectors)
endobj
240 0 obj
<< /S /GoTo /D (appendix.E) >>
endobj
243 0 obj
(Abstract Concepts)
endobj
244 0 obj
<< /S /GoTo /D (subsection.E.1) >>
endobj
247 0 obj
(Dual Spaces)
endobj
248 0 obj
<< /S /GoTo /D (subsection.E.2) >>
endobj
251 0 obj
(Groups)
endobj
252 0 obj
<< /S /GoTo /D (subsection.E.3) >>
endobj
255 0 obj
(Fields)
endobj
256 0 obj
<< /S /GoTo /D (subsection.E.4) >>
endobj
259 0 obj
(Rings)
endobj
260 0 obj
<< /S /GoTo /D (subsection.E.5) >>
endobj
263 0 obj
(Algebras)
endobj
264 0 obj
<< /S /GoTo /D (appendix.F) >>
endobj
267 0 obj
(Sine and Cosine as an Orthonormal Basis)
endobj
268 0 obj
<< /S /GoTo /D (appendix.G) >>
endobj
271 0 obj
(Movie Scripts)
endobj
272 0 obj
<< /S /GoTo /D (subsection.G.1) >>
endobj
275 0 obj
(Introductory Video)
endobj
276 0 obj
<< /S /GoTo /D (subsection.G.2) >>
endobj
279 0 obj
(What is Linear Algebra: Overview)
endobj
280 0 obj
<< /S /GoTo /D (subsection.G.3) >>
endobj
283 0 obj
(What is Linear Algebra: 3 3 Matrix Example)
endobj
284 0 obj
<< /S /GoTo /D (subsection.G.4) >>
endobj
287 0 obj
(What is Linear Algebra: Hint)
endobj
288 0 obj
<< /S /GoTo /D (subsection.G.5) >>
endobj
291 0 obj
(Gaussian Elimination: Augmented Matrix Notation)
endobj
292 0 obj
<< /S /GoTo /D (subsection.G.6) >>
endobj
295 0 obj
(Gaussian Elimination: Equivalence of Augmented Matrices)
endobj
296 0 obj
<< /S /GoTo /D (subsection.G.7) >>
endobj
299 0 obj
(Gaussian Elimination: Hints for Review Questions 4 and 5)
endobj
300 0 obj
<< /S /GoTo /D (subsection.G.8) >>
endobj
303 0 obj
(Gaussian Elimination: 3 3 Example)
endobj
304 0 obj
<< /S /GoTo /D (subsection.G.9) >>
endobj
307 0 obj
(Elementary Row Operations: Example)
endobj
308 0 obj
<< /S /GoTo /D (subsection.G.10) >>
endobj
311 0 obj
(Elementary Row Operations: Worked Examples)
endobj
312 0 obj
<< /S /GoTo /D (subsection.G.11) >>
endobj
315 0 obj
(Elementary Row Operations: Explanation of Proof for Theorem 3.1)
endobj
316 0 obj
<< /S /GoTo /D (subsection.G.12) >>
endobj
319 0 obj
( Elementary Row Operations: Hint for Review Question 3)
endobj
320 0 obj
<< /S /GoTo /D (subsection.G.13) >>
endobj
323 0 obj
(Solution Sets for Systems of Linear Equations: Planes)
endobj
324 0 obj
<< /S /GoTo /D (subsection.G.14) >>
endobj
327 0 obj
(Solution Sets for Systems of Linear Equations: Pictures and Explanation)
endobj
328 0 obj
<< /S /GoTo /D (subsection.G.15) >>
endobj
331 0 obj
(Solution Sets for Systems of Linear Equations: Example)
endobj
332 0 obj
<< /S /GoTo /D (subsection.G.16) >>
endobj
335 0 obj
(Solution Sets for Systems of Linear Equations: Hint)
endobj
336 0 obj
<< /S /GoTo /D (subsection.G.17) >>
endobj
339 0 obj
(Vectors in Space, n-Vectors: Overview)
endobj
340 0 obj
<< /S /GoTo /D (subsection.G.18) >>
endobj
343 0 obj
(Vectors in Space, n-Vectors: Review of Parametric Notation)
endobj
344 0 obj
<< /S /GoTo /D (subsection.G.19) >>
endobj
347 0 obj
(Vectors in Space, n-Vectors: The Story of Your Life)
endobj
348 0 obj
<< /S /GoTo /D (subsection.G.20) >>
endobj
351 0 obj
(Vector Spaces: Examples of Each Rule)
endobj
352 0 obj
<< /S /GoTo /D (subsection.G.21) >>
endobj
355 0 obj
(Vector Spaces: Example of a Vector Space)
endobj
356 0 obj
<< /S /GoTo /D (subsection.G.22) >>
endobj
359 0 obj
(Vector Spaces: Hint)
endobj
360 0 obj
<< /S /GoTo /D (subsection.G.23) >>
endobj
363 0 obj
(Linear Transformations: A Linear and A Non-Linear Example)
endobj
364 0 obj
<< /S /GoTo /D (subsection.G.24) >>
endobj
367 0 obj
(Linear Transformations: Derivative and Integral of \(Real\) Polynomials of Degree at Most 3)
endobj
368 0 obj
<< /S /GoTo /D (subsection.G.25) >>
endobj
371 0 obj
(Linear Transformations: Linear Transformations Hint)
endobj
372 0 obj
<< /S /GoTo /D (subsection.G.26) >>
endobj
375 0 obj
(Matrices: Adjacency Matrix Example)
endobj
376 0 obj
<< /S /GoTo /D (subsection.G.27) >>
endobj
379 0 obj
(Matrices: Do Matrices Commute?)
endobj
380 0 obj
<< /S /GoTo /D (subsection.G.28) >>
endobj
383 0 obj
(Matrices: Hint for [matprob]Review Question 4)
endobj
384 0 obj
<< /S /GoTo /D (subsection.G.29) >>
endobj
387 0 obj
(Matrices: Hint for [matprob]Review Question 5)
endobj
388 0 obj
<< /S /GoTo /D (subsection.G.30) >>
endobj
391 0 obj
(Properties of Matrices: Matrix Exponential Example)
endobj
392 0 obj
<< /S /GoTo /D (subsection.G.31) >>
endobj
395 0 obj
(Properties of Matrices: Explanation of the Proof)
endobj
396 0 obj
<< /S /GoTo /D (subsection.G.32) >>
endobj
399 0 obj
(Properties of Matrices: A Closer Look at the Trace Function)
endobj
400 0 obj
<< /S /GoTo /D (subsection.G.33) >>
endobj
403 0 obj
(Properties of Matrices: Matrix Exponent Hint)
endobj
404 0 obj
<< /S /GoTo /D (subsection.G.34) >>
endobj
407 0 obj
(Inverse Matrix: A 22 Example)
endobj
408 0 obj
<< /S /GoTo /D (subsection.G.35) >>
endobj
411 0 obj
(Inverse Matrix: Hints for [problemuniquesolution]Problem 3)
endobj
412 0 obj
<< /S /GoTo /D (subsection.G.36) >>
endobj
415 0 obj
(Inverse Matrix: Left and Right Inverses)
endobj
416 0 obj
<< /S /GoTo /D (subsection.G.37) >>
endobj
419 0 obj
(LU Decomposition: Example: How to Use LU Decomposition)
endobj
420 0 obj
<< /S /GoTo /D (subsection.G.38) >>
endobj
423 0 obj
(LU Decomposition: Worked Example)
endobj
424 0 obj
<< /S /GoTo /D (subsection.G.39) >>
endobj
427 0 obj
(LU Decomposition: Block LDU Explanation)
endobj
428 0 obj
<< /S /GoTo /D (subsection.G.40) >>
endobj
431 0 obj
(Elementary Matrices and Determinants: Permutations)
endobj
432 0 obj
<< /S /GoTo /D (subsection.G.41) >>
endobj
435 0 obj
(Elementary Matrices and Determinants: Some Ideas Explained)
endobj
436 0 obj
<< /S /GoTo /D (subsection.G.42) >>
endobj
439 0 obj
(Elementary Matrices and Determinants: Hints for [probinversionnumber]Problem 4)
endobj
440 0 obj
<< /S /GoTo /D (subsection.G.43) >>
endobj
443 0 obj
(Elementary Matrices and Determinants II: Elementary Determinants)
endobj
444 0 obj
<< /S /GoTo /D (subsection.G.44) >>
endobj
447 0 obj
(Elementary Matrices and Determinants II: Determinants and Inverses)
endobj
448 0 obj
<< /S /GoTo /D (subsection.G.45) >>
endobj
451 0 obj
(Elementary Matrices and Determinants II: Product of Determinants)
endobj
452 0 obj
<< /S /GoTo /D (subsection.G.46) >>
endobj
455 0 obj
( Properties of the Determinant: Practice taking Determinants)
endobj
456 0 obj
<< /S /GoTo /D (subsection.G.47) >>
endobj
459 0 obj
( Properties of the Determinant: The Adjoint Matrix)
endobj
460 0 obj
<< /S /GoTo /D (subsection.G.48) >>
endobj
463 0 obj
( Properties of the Determinant: Hint for [problemcomplexity]Problem 3)
endobj
464 0 obj
<< /S /GoTo /D (subsection.G.49) >>
endobj
467 0 obj
(Subspaces and Spanning Sets: Worked Example)
endobj
468 0 obj
<< /S /GoTo /D (subsection.G.50) >>
endobj
471 0 obj
(Subspaces and Spanning Sets: Hint for Problem 2)
endobj
472 0 obj
<< /S /GoTo /D (subsection.G.51) >>
endobj
475 0 obj
(Subspaces and Spanning Sets: Hint)
endobj
476 0 obj
<< /S /GoTo /D (subsection.G.52) >>
endobj
479 0 obj
(Linear Independence: Worked Example)
endobj
480 0 obj
<< /S /GoTo /D (subsection.G.53) >>
endobj
483 0 obj
(Linear Independence: Proof of [lineardependence]Theorem 16.1)
endobj
484 0 obj
<< /S /GoTo /D (subsection.G.54) >>
endobj
487 0 obj
(Linear Independence: Hint for Problem 1)
endobj
488 0 obj
<< /S /GoTo /D (subsection.G.55) >>
endobj
491 0 obj
(Basis and Dimension: Proof of Theorem)
endobj
492 0 obj
<< /S /GoTo /D (subsection.G.56) >>
endobj
495 0 obj
(Basis and Dimension: Worked Example)
endobj
496 0 obj
<< /S /GoTo /D (subsection.G.57) >>
endobj
499 0 obj
(Basis and Dimension: Hint for [probbitmatricesbasis]Problem 2)
endobj
500 0 obj
<< /S /GoTo /D (subsection.G.58) >>
endobj
503 0 obj
(Eigenvalues and Eigenvectors: Worked Example)
endobj
504 0 obj
<< /S /GoTo /D (subsection.G.59) >>
endobj
507 0 obj
(Eigenvalues and Eigenvectors: 2 2 Example)
endobj
508 0 obj
<< /S /GoTo /D (subsection.G.60) >>
endobj
511 0 obj
(Eigenvalues and Eigenvectors: Jordan Cells)
endobj
512 0 obj
<< /S /GoTo /D (subsection.G.61) >>
endobj
515 0 obj
(Eigenvalues and Eigenvectors II: Eigenvalues)
endobj
516 0 obj
<< /S /GoTo /D (subsection.G.62) >>
endobj
519 0 obj
(Eigenvalues and Eigenvectors II: Eigenspaces)
endobj
520 0 obj
<< /S /GoTo /D (subsection.G.63) >>
endobj
523 0 obj
(Eigenvalues and Eigenvectors II: Hint)
endobj
524 0 obj
<< /S /GoTo /D (subsection.G.64) >>
endobj
527 0 obj
(Diagonalization: Derivative Is Not Diagonalizable)
endobj
528 0 obj
<< /S /GoTo /D (subsection.G.65) >>
endobj
531 0 obj
(Diagonalization: Change of Basis Example)
endobj
532 0 obj
<< /S /GoTo /D (subsection.G.66) >>
endobj
535 0 obj
(Diagonalization: Diagionalizing Example)
endobj
536 0 obj
<< /S /GoTo /D (subsection.G.67) >>
endobj
539 0 obj
(Orthonormal Bases: Sine and Cosine Form All Orthonormal Bases for R2)
endobj
540 0 obj
<< /S /GoTo /D (subsection.G.68) >>
endobj
543 0 obj
(Orthonormal Bases: Hint for Question 2, Lecture 21)
endobj
544 0 obj
<< /S /GoTo /D (subsection.G.69) >>
endobj
547 0 obj
(Orthonormal Bases: Hint )
endobj
548 0 obj
<< /S /GoTo /D (subsection.G.70) >>
endobj
551 0 obj
(Gram-Schmidt and Orthogonal Complements: 44 Gram Schmidt Example)
endobj
552 0 obj
<< /S /GoTo /D (subsection.G.71) >>
endobj
555 0 obj
(Gram-Schmidt and Orthogonal Complements: Overview)
endobj
556 0 obj
<< /S /GoTo /D (subsection.G.72) >>
endobj
559 0 obj
(Gram-Schmidt and Orthogonal Complements: QR Decomposition Example)
endobj
560 0 obj
<< /S /GoTo /D (subsection.G.73) >>
endobj
563 0 obj
(Gram-Schmidt and Orthogonal Complements: Hint for Problem 1)
endobj
564 0 obj
<< /S /GoTo /D (subsection.G.74) >>
endobj
567 0 obj
(Diagonalizing Symmetric Matrices: 33 Example)
endobj
568 0 obj
<< /S /GoTo /D (subsection.G.75) >>
endobj
571 0 obj
(Diagonalizing Symmetric Matrices: Hints for [probrealeigenvalues]Problem 1)
endobj
572 0 obj
<< /S /GoTo /D (subsection.G.76) >>
endobj
575 0 obj
(Kernel, Range, Nullity, Rank: Invertibility Conditions)
endobj
576 0 obj
<< /S /GoTo /D (subsection.G.77) >>
endobj
579 0 obj
(Kernel, Range, Nullity, Rank: Hint for \0401 )
endobj
580 0 obj
<< /S /GoTo /D (subsection.G.78) >>
endobj
583 0 obj
(Least Squares: Hint for [kernalsolspaceprob]Problem 1 )
endobj
584 0 obj
<< /S /GoTo /D (subsection.G.79) >>
endobj
587 0 obj
(Least Squares: Hint for [problem:lsprob2]Problem 2 )
endobj
588 0 obj
<< /S /GoTo /D (appendix.H) >>
endobj
591 0 obj
(Student Contributions)
endobj
592 0 obj
<< /S /GoTo /D (appendix.I) >>
endobj
595 0 obj
(Other Resources)
endobj
596 0 obj
<< /S /GoTo /D (appendix.J) >>
endobj
599 0 obj
(List of Symbols)
endobj
600 0 obj
<< /S /GoTo /D (appendix.J) >>
endobj
602 0 obj
(Index)
endobj
603 0 obj
<< /S /GoTo /D [604 0 R /Fit] >>
endobj
607 0 obj <<
/Length 368
/Filter /FlateDecode
>>
stream
xڅRMO�0��+�d �ngh5��*��B�%Y t㿷����`8̛�Λ�8l��&����*Z]f
�3�HB����x�KVRU��m�m�4������ꐴ}��!!�>�����Ӈ5c�R]��9�`�P��ʂ��C�I&J
m���x�\��]{�”��>�o

READ  [Update] JA全農 COUNTDOWN JAPAN | ja全農countdown japan - Pickpeup

READ  TÜRKÇE POP REMİX ŞARKILAR 2021 🔥 Yeni Türkçe Pop Şarkılar 2021 | müzik | En son Tay şarkıları


An Interview with Gilbert Strang on Teaching Linear Algebra


MIT 18.06SC Linear Algebra, Fall 2011
Instructor: Gilbert Strang, Sarah Hansen
View the complete course: https://ocw.mit.edu/1806SCF11
YouTube Playlist: https://www.youtube.com/playlist?list=PLUl4u3cNGP63uMA4q8GaU6Eg5nzeOc8tx
In this video, Professor Gilbert Strang shares how he infuses linear algebra with a sense of humanity as a way to engage students in learning mathematics.
License: Creative Commons BYNCSA
More information at https://ocw.mit.edu/terms
More courses at https://ocw.mit.edu

นอกจากการดูบทความนี้แล้ว คุณยังสามารถดูข้อมูลที่เป็นประโยชน์อื่นๆ อีกมากมายที่เราให้ไว้ที่นี่: ดูความรู้เพิ่มเติมที่นี่

An Interview with Gilbert Strang on Teaching Linear Algebra

Why is pi here? And why is it squared? A geometric answer to the Basel problem


A most beautiful proof of the Basel problem, using light.
Help fund future projects: https://www.patreon.com/3blue1brown
An equally valuable form of support is to simply share some of the videos.
Special thanks to these supporters: http://3b1b.co/baselthanks
This video was sponsored by Brilliant: https://brilliant.org/3b1b
Brilliant’s principles list that I referenced:
https://brilliant.org/principles/
Get early access and more through Patreon:
https://www.patreon.com/3blue1brown
The content here was based on a paper by Johan Wästlund
http://www.math.chalmers.se/~wastlund/Cosmic.pdf
Check out Mathologer’s video on the many cousins of the Pythagorean theorem:
https://youtu.be/p0SOWbzUYI
On the topic of Mathologer, he also has a nice video about the Basel problem:
https://youtu.be/yPl64xi_ZZA
A simple Geogebra to play around with the Inverse Pythagorean Theorem argument shown here.
https://ggbm.at/yPExUf7b
Some of you may be concerned about the final step here where we said the circle approaches a line. What about all the lighthouses on the far end? Well, a more careful calculation will show that the contributions from those lights become more negligible. In fact, the contributions from almost all lights become negligible. For the ambitious among you, see this paper for full details.
If you want to contribute translated subtitles or to help review those that have already been made by others and need approval, you can click the gear icon in the video and go to subtitles/cc, then \”add subtitles/cc\”. I really appreciate those who do this, as it helps make the lessons accessible to more people.
Music by Vincent Rubinetti:
https://vincerubinetti.bandcamp.com/album/themusicof3blue1brown

READ  [Update] AT&T Yahoo Email, News, Sports & More | att - Pickpeup

3blue1brown is a channel about animating math, in all senses of the word animate. And you know the drill with YouTube, if you want to stay posted on new videos, subscribe, and click the bell to receive notifications (if you’re into that).
If you are new to this channel and want to see more, a good place to start is this playlist: http://3b1b.co/recommended
Various social media stuffs:
Website: https://www.3blue1brown.com
Twitter: https://twitter.com/3Blue1Brown
Patreon: https://patreon.com/3blue1brown
Facebook: https://www.facebook.com/3blue1brown
Reddit: https://www.reddit.com/r/3Blue1Brown

Why is pi here?  And why is it squared?  A geometric answer to the Basel problem

One.I.1 Solving Linear Systems, Part One


Using Gauss’s Method to find the solution of linear systems that have a unique solution. From Linear Algebra, by Jim Hefferon. See http://hefferon.net/linearalgebra/.

One.I.1 Solving Linear Systems, Part One

Introduction to Linear Algebra by Hefferon


Introduction to a series of video lectures based on the text Linear Algebra, by Jim Hefferon. See https://hefferon.net/linearalgebra .
The video mentions two links. For learning how to learn, see Stephen Chew’s video series https://www.youtube.com/watch?v=htv6eap1_M\u0026list=PL85708E6EA236E3DB\u0026index=1 . The 3Blue1Brown Linear Algebra series starts at https://www.youtube.com/watch?v=fNk_zzaMoSs\u0026list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab .

Introduction to Linear Algebra by Hefferon

College Algebra – Full Course


Learn Algebra in this full college course. These concepts are often used in programming.
This course was created by Dr. Linda Green, a lecturer at the University of North Carolina at Chapel Hill. Check out her YouTube channel: https://www.youtube.com/channel/UCkyLJh6hQS1TlhUZxOMjTFw
⭐️ Lecture Notes ⭐️
🔗 Algebra Notes: http://lindagreen.web.unc.edu/files/2020/08/classNotes_m110_2018F.pdf
⭐️ Course Contents ⭐️
⌨️ (0:00:00) Exponent Rules
⌨️ (0:10:14) Simplifying using Exponent Rules
⌨️ (0:21:18) Simplifying Radicals
⌨️ (0:31:46) Factoring
⌨️ (0:45:08) Factoring Additional Examples
⌨️ (0:55:37) Rational Expressions
⌨️ (1:05:00) Solving Quadratic Equations
⌨️ (1:15:22) Rational Equations
⌨️ (1:25:31) Solving Radical Equations
⌨️ (1:37:01) Absolute Value Equations
⌨️ (1:42:23) Interval Notation
⌨️ (1:49:35) Absolute Value Inequalities
⌨️ (1:56:55) Compound Linear Inequalities
⌨️ (2:05:59) Polynomial and Rational Inequalities
⌨️ (2:16:20) Distance Formula
⌨️ (2:20:59) Midpoint Formula
⌨️ (2:23:30) Circles: Graphs and Equations
⌨️ (2:33:06) Lines: Graphs and Equations
⌨️ (2:41:35) Parallel and Perpendicular Lines
⌨️ (2:49:05) Functions
⌨️ (3:00:53) Toolkit Functions
⌨️ (3:08:00) Transformations of Functions
⌨️ (3:20:29) Introduction to Quadratic Functions
⌨️ (3:23:54) Graphing Quadratic Functions
⌨️ (3:33:02) Standard Form and Vertex Form for Quadratic Functions
⌨️ (3:37:18) Justification of the Vertex Formula
⌨️ (3:41:11) Polynomials
⌨️ (3:49:06) Exponential Functions
⌨️ (3:56:53) Exponential Function Applications
⌨️ (4:08:38) Exponential Functions Interpretations
⌨️ (4:18:17) Compound Interest
⌨️ (4:29:33) Logarithms: Introduction
⌨️ (4:38:15) Log Functions and Their Graphs
⌨️ (4:48:59) Combining Logs and Exponents
⌨️ (4:53:38) Log Rules
⌨️ (5:02:10) Solving Exponential Equations Using Logs
⌨️ (5:10:20) Solving Log Equations
⌨️ (5:19:27) Doubling Time and Half Life
⌨️ (5:35:34) Systems of Linear Equations
⌨️ (5:47:36) Distance, Rate, and Time Problems
⌨️ (5:53:20) Mixture Problems
⌨️ (5:59:48) Rational Functions and Graphs
⌨️ (6:13:13) Combining Functions
⌨️ (6:17:10) Composition of Functions
⌨️ (6:29:32) Inverse Functions

Learn to code for free and get a developer job: https://www.freecodecamp.org
Read hundreds of articles on programming: https://www.freecodecamp.org/news
And subscribe for new videos on technology every day: https://youtube.com/subscription_center?add_user=freecodecampLearn Algebra in this full college course. These concepts are often used in programming.

This course was created by Dr. Linda Green, a lecturer at the University of North Carolina at Chapel Hill. Check out her YouTube channel: https://www.youtube.com/channel/UCkyLJh6hQS1TlhUZxOMjTFw
⌨️ (0:00:00) Exponent Rules
⌨️ (0:10:14) Simplifying using Exponent Rules
⌨️ (0:21:18) Simplifying Radicals
⌨️ (0:31:46) Factoring
⌨️ (0:45:08) Factoring Additional Examples
⌨️ (0:55:37) Rational Expressions
⌨️ (1:05:00) Solving Quadratic Equations
⌨️ (1:15:22) Rational Equations
⌨️ (1:25:31) Solving Radical Equations
⌨️ (1:37:01) Absolute Value Equations
⌨️ (1:42:23) Interval Notation
⌨️ (1:49:35) Absolute Value Inequalities
⌨️ (1:56:55) Compound Linear Inequalities
⌨️ (2:05:59) Polynomial and Rational Inequalities
⌨️ (2:16:20) Distance Formula
⌨️ (2:20:59) Midpoint Formula
⌨️ (2:23:30) Circles: Graphs and Equations
⌨️ (2:33:06) Lines: Graphs and Equations
⌨️ (2:41:35) Parallel and Perpendicular Lines
⌨️ (2:49:05) Functions
⌨️ (3:00:53) Toolkit Functions
⌨️ (3:08:00) Transformations of Functions
⌨️ (3:20:29) Introduction to Quadratic Functions
⌨️ (3:23:54) Graphing Quadratic Functions
⌨️ (3:33:02) Standard Form and Vertex Form for Quadratic Functions
⌨️ (3:37:18) Justification of the Vertex Formula
⌨️ (3:41:11) Polynomials
⌨️ (3:49:06) Exponential Functions
⌨️ (3:56:53) Exponential Function Applications
⌨️ (4:08:38) Exponential Functions Interpretations
⌨️ (4:18:17) Compound Interest
⌨️ (4:29:33) Logarithms: Introduction
⌨️ (4:38:15) Log Functions and Their Graphs
⌨️ (4:48:59) Combining Logs and Exponents
⌨️ (4:53:38) Log Rules
⌨️ (5:02:10) Solving Exponential Equations Using Logs
⌨️ (5:10:20) Solving Log Equations
⌨️ (5:19:27) Doubling Time and Half Life
⌨️ (5:35:34) Systems of Linear Equations
⌨️ (5:47:36) Distance, Rate, and Time Problems
⌨️ (5:53:20) Mixture Problems
⌨️ (5:59:48) Rational Functions and Graphs
⌨️ (6:13:13) Combining Functions
⌨️ (6:17:10) Composition of Functions
⌨️ (6:29:32) Inverse Functions

Learn to code for free and get a developer job: https://www.freecodecamp.org
Read hundreds of articles on programming: https://www.freecodecamp.org/news
And subscribe for new videos on technology every day: https://youtube.com/subscription_center?add_user=freecodecamp

College Algebra - Full Course

นอกจากการดูบทความนี้แล้ว คุณยังสามารถดูข้อมูลที่เป็นประโยชน์อื่นๆ อีกมากมายที่เราให้ไว้ที่นี่: ดูวิธีอื่นๆMusic of Turkey

ขอบคุณมากสำหรับการดูหัวข้อโพสต์ linear algebra

Leave a Comment